(¢J) embrace

Rethinking KPIs:

How engineering can
own business outcomes




Intro

This guide is designed for engineering leaders to address a persistent challenge: the
disconnect between how businesses measure success and how engineering teams
monitor systems.

Businesses focus on outcomes like revenue, daily active users (DAU), and churn, while
engineering teams typically track system-centric metrics such as uptime, crashes, and
response times. Without a shared language or framework to bridge this gap, critical
problems often remain undetected until key performance indicators (KPIs) have already
been negatively impacted.

This guide introduces a framework to help engineering teams translate business KPIs
into clear, actionable technical insights. The framework is anchored on user-focused
observability, a practice that goes beyond traditional observability to prioritize real user
impact. Engineers, therefore, can tactically adapt these tools and data-driven
techniques to proactively solve problems related to business KPIs and maintain
strategic alignment with commercial teams.

Want to learn more about
how you can operationalize
KPIs?

Get the guide.



https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit

01

THE KPI DISCONNECT:
BUSINESS GOALS VS. TECHNICAL
SIGNALS

A fundamental disconnect often keeps organizations in a steady state
of dysfunction. Executives and commercial teams design OKRs or KPIs
that have broad, organization-wide impact, such as customer churn or
revenue targets. Meanwhile, engineering teams maintain their own
sets of performance standards based on traditional, very technical
metrics. These are things like system uptime, latency, crash-free rates,
etc.

These two distinct sets of metrics rarely connect directly. This is
unproductive and inefficient because, in reality, both sets of metrics
are deeply connected and should work in tandem to achieve the same
goal.

One of the problems preventing this from happening is that purely
business-level KPIs are very abstract and all-encompassing; it is often
difficult to isolate exactly what factors influence a metric or which
team is responsible. On the flip side, technical KPIs are often too “in
the weeds” and hyper-specific. In some cases, an engineering KPI
might be “technically” hitting its mark, but it’s too isolated from other
systems and functions to be truly indicative of whether core product
functionality is working like it’s meant to, from the perspective of
customers.



In the grander scheme, this disconnect between business and technical KPIs often
leads to some common challenges:

¢ Business KPIs become lagging indicators: Critical product issues are only
detected after negative impacts like revenue loss or erosion of customer trust have
already occurred.

¢ Prioritization struggles: Technical teams often find it difficult to prioritize issues
effectively because they lack a clear understanding of the specific business impact
associated with each technical problem.

For example, a business KPI might be "orders per minute.” If it suddenly drops,
traditional infrastructure dashboards might not be helpful as they may not show any
obvious technical anomalies, leaving teams blind to the root cause and delaying
identification and resolution.

In the “orders per minute” example, frontend issues not picked up by traditional
dashboards might look like:

e A mobile carrier introduces packet loss or throttling in a specific region, leading to
API calls intermittently failing or taking 5-10 seconds longer

e A CDN node serving assets (images, CSS, JS bundles) in Europe has a
misconfiguration, so those assets load extremely slowly for EU users

e A payment gateway SDK (e.g., Stripe, PayPal) times out for mobile Safari users,
preventing them from completing a purchase

This disconnect can prevent engineering from acting proactively to protect business
outcomes, while leaving other stakeholders struggling to get ahead of issues that
negatively impact their commercial KPIs.



02

WHY EVERY BUSINESS KPI IS
BUILT ON USER ACTIONS

Breaking this frustrating cycle requires a different
approach to software KPIs, one that:

¢ (1) puts end user impact, rather than specific
technical elements, front and center, and

e (2) sets up translational layers between business
outcomes and the technology that drives them

Fundamentally, all business outcomes are the direct
result of individual user interactions. Every major
business KPI is an aggregation of smaller, discrete user
actions.

Consider the "orders per minute" KPI:

e Itis composed of user actions, such as searching for
a product, adding items to a cart, and completing the
checkout process.

e Each of these user actions relies on various technical
dependencies, including frontend rendering, API
latency, and the uptime of payment services.



This means that even micro-level failures — such as a degraded checkout API
performance on specific devices — can cascade upwards and directly lead to declines in
overall business KPIs. Therefore, proactively protecting KPIs necessitates tracking user
flows and their underlying technical dependencies end-to-end.

To think of this from the opposite perspective, prioritizing engineering reliability work
also requires understanding how certain technical functions are directly related to big-
picture, customer-impacting outcomes.

USER
ACTIVITY

TECHNICAL COMMERCIAL
SIGNALS OUTCOMES



03

IMPLEMENTING THE
TRANSLATIONAL LAYER

Many organizations struggle with this gap between business
KPIs and technical reliability metrics. Bridging this requires
a translational layer that breaks down business KPIs into
more manageable components, while simultaneously
contextualizing technical data.

The first tool you might reach for to conceptualize this layer
is product analytics.

Product analytics tools (such as Mixpanel, Amplitude, and
Google Analytics) are extremely useful. You would be hard
pressed to find an organization that does not use this type of
data on a regular basis across Product, Engineering, Design,
and Marketing teams.

These tools are excellent at telling teams what is happening,
providing valuable insights into user behavior and trends.
You might glean high-level data points from product
analytics like:

e Conversion rate has dropped 12% this week
e Users are abandoning carts at the payment screen
e i0S 18 users are engaging less with push notifications



WHERE PRODUCT ANALYTICS FALL SHORT

While these insights are highly valuable, they stop short of providing the technical
visibility needed to answer the next critical question: Why?

Product analytics primarily focuses on user actions and behavioral trends. Critically,
they cannot reveal the technical dependencies behind those actions. They are great at
telling you what is going on, but are extremely limited in giving you real, directional
insight into why it’s happening.

For example, a product analytics tool can effectively show that checkout completions
declined, but it cannot tell you that the payment API is intermittently failing for users
on 3G networks.

The result:

Without this crucial link between behavioral data and technical root causes, teams
often end up playing a guessing game. Product managers observe a problem in the
user funnel, but engineering teams lack the precise context required to reproduce or
resolve it efficiently. If this problem is affecting a critical function like log-in or
payments, its effects inevitably cascade all the way to business outcomes.

Your KPI is now suffering and, although you can see what features are most likely
responsible, you’re not all that much closer to resolving the root cause.

This gap between “business visibility” (the WHAT) and “technical observability” (the
WHY) inevitably slows down problem resolution and can lead to friction between
product, engineering, and commercial teams.



WHERE USER-FOCUSED OBSERVABILITY COMES IN

User-focused observability is a practice of monitoring software systems with an
emphasis on how the reliability and functionality of these systems is perceived by the
end user who is trying to accomplish something on your site or app. This is in contrast
to traditional observability, which focuses on tracking internal components, like
servers and databases.

User-focused observability complements product analytics by directly bridging this gap
between the technical and behavioral.

This looks like:

e Linking what is happening (e.g., a decline in conversions) with why it’s happening
(e.g., an API timeout for a specific device or operating system).

¢ Providing end-to-end context by mapping user actions (like "add to cart") directly
to the technical dependencies that power them.

e Equipping engineering with precise failure data (including 100% session capture,
detailed error traces, and network spans) so issues can be reproduced and fixed
quickly.

Traditional observability tools, which primarily focus on logs, metrics, and traces, often
provide a fragmented and system-centric view. While valuable, they typically do not
inherently connect technical data back to business outcomes.



In contrast, user-focused observability fundamentally shifts this perspective by
starting with the end-user journey and then connecting it to the various technical
components. This approach offers several critical benefits:

Outcome-based metrics: Engineering teams can establish alerts based on the health
of specific KPIs and user flows, rather than solely on raw error rates.

Granular technical mapping: It allows for the precise pinpointing of which device,
geographical region, or specific dependency is experiencing a failure.

Business prioritization: Teams can effectively rank and prioritize engineering
resources based on their direct impact on revenue or customer experience, moving
beyond mere technical severity codes.

This method essentially creates a "Business KPI = User Actions = Technical
Dependencies” funnel, providing a clear path from business outcomes to technical
realities.

REAL-WORLD USE CASE

Consider the case of a popular e-commerce application where "orders per minute”
suddenly experienced a dip. Despite this critical business impact, legacy monitoring
systems showed no major outages or anomalies, leaving the engineering and product
teams without any clear indication of the problem.

However, by implementing user-focused observability, the real cause was quickly
identified: There was a timeout issue with a specific payment processor, but only for
iOS users running the latest operating system version. Because the issue was precisely
pinpointed and understood in terms of its user and business impact, the teams were
able to resolve it rapidly. This proactive approach restored the KPI's health and
prevented the issue from escalating into significant revenue loss and customer churn.



04

FRAMEWORK: MAPPING BUSINESS
KPIS TO TECHNICAL METRICS

To help engineering leaders apply this concept, here’s a practical framework to break down
KPIs into their constituent user actions and technical dependencies.

Business KPI

Orders per minute

DAU/MAU

Retention rate

Customer
satisfaction

User action(s)

Add to cart, checkout

Login, session start

Session duration,
feature use

Smooth navigation,
load times

Technical
dependencies

API latency, payment
gateway, frontend

Auth service, SDK
initialization

Crash-free sessions,
latency

Rendering
performance, third-
party SDKs

Failure impact

Lost revenue

Decline in active
users

Increased churn

Lower NPS / reviews

The key is to have a tangible way to link high-level business goals to the specific technical
components and the user interactions that underpin them.



05

ACTION PLAN: HOW ENGINEERING
LEADERS CAN PROTECT KPIS

For engineering leaders to effectively protect business KPIs and align technical work
with commercial outcomes, it’s important to create a clear action plan that integrates
user-focused observability.

This might include steps like:

e Align with product and business leaders on which KPIs matter most to the
organization.

o Clearly define the specific user flows and critical transactions that directly power
those identified KPIs.

e Implement observability solutions that are capable of tracking these critical user
flows end-to-end across the entire technology stack.

e Incorporate user outcome metrics into traditional observability workflows.

¢ Continuously map technical signals (such as latency, errors, and crashes) directly to
their corresponding business impact.

By adopting this strategic approach, observability transforms from a mere reactive
troubleshooting tool into a proactive business enabler. And product analytics also
becomes a more powerful directional indicator in tandem.

This empowers the engineering team to drive and protect strategic outcomes, working
more cohesively with commercial stakeholders.



CONCLUSION: PROTECTING KPIS
STARTS WITH THE USER

In summary, business KPIs are ultimately driven by user actions, whereas traditional
observability approaches focus on measuring system health. This disconnect causes
friction for engineering teams who are expected to prioritize efforts based on their
business impact.

By translating business metrics into technical clarity, engineering leaders can align
efforts towards driving business goals, such as:

e The ability to detect risks early, often before KPIs experience any significant dip.

e The power to prioritize fixes based on their direct revenue or customer impact.

e The means to align engineering work seamlessly with overarching strategic business
outcomes.

To learn more about how leading teams are operationalizing this KPI-to-technical-signal
framework, check out our follow-up KPI translation toolkit or contact us for a KPI audit.

Want to learn more about
how you can operationalize
KPIs?

Get the guide.



https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit
https://get.embrace.io/kpi-translation-toolkit

(*9) embrace

Embrace is the only user-focused observability platform that ties
technical performance to end-user impact. Powered by
OpenTelemetry, Embrace provides real user monitoring (RUM) across
mobile and web, giving engineering teams the visibility and context
they need to resolve issues faster, optimize performance, and deliver
exceptional digital experiences.

Contact

1901 Avenue of the Stars #200, Los Angeles, CA 90067

— O

(310) 461-1310

contact@embrace.io

K

embrace.io

> 4

Learn more at embrace.io or follow Embrace on LinkedIn, YouTube, or X.



https://embrace.io/
https://embrace.io/
https://embrace.io/
https://www.linkedin.com/company/embrace.io/posts/?feedView=all
https://www.youtube.com/channel/UC8EjpY1ol3QGdp2qk1uZARQ
https://x.com/embracemobile?lang=en

